% 1 - ορισμός. Τι είναι το Электромагнитные волны
Diclib.com
Διαδικτυακό λεξικό

Τι (ποιος) είναι Электромагнитные волны - ορισμός

ФОРМА ЭНЕРГИИ, ИЗЛУЧАЕМАЯ ЗАРЯЖЕННЫМИ ЧАСТИЦАМИ
Электромагнитные волны; Шкала электромагнитных волн; Оптические волны; Электромагнитные излучения; Световая волна; Излучение электромагнитное; ЭМ волна; Световые волны; Излучение электромагнитных колебаний
  • призма]] разлагает луч белого цвета на составляющие его лучи<ref>Структура луча показана условно. Синусоидальность лучей показана условно. Разная скорость света в призме для разных длин волн не показана.</ref>
  • thumb

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ         
электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме скорость распространения электромагнитной волны с ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 300000 км/с (см. Скорость света). В однородных изотропных средах направления напряженностей электрических (Е) и магнитных (Н) полей электромагнитных волн перпендикулярны друг другу и направлению распространения волны, т. е. электромагнитная волна является поперечной. По длине волны ? различают: радиоволны с ? > 10-2 см; световые волны (инфракрасные с ? ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 2·10-1 - 7,4·10-5 см, видимый свет с ? ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 7,4·10-5 - 4·10-5 см, УФ излучение с ? ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 4·10-5 - 10-6 см); рентгеновское излучение с ? ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 10-5 - 10-12 см; гамма-излучение с ? < 10-8 см. При прохождении электромагнитной волны через среду возможны процессы отражения, преломления, дифракции и интерференции, дисперсии и др.
Электромагнитные волны         

Электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем (См. Фарадей) в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света (См. Скорость света) с во все стороны от источника. Из того обстоятельства, что скорость распространения Э. в. в вакууме равна скорости света, Максвелл сделал вывод, что свет представляет собой Э. в. В 1888 максвелловская теория Э. в. получила подтверждение в опытах Г. Герца, что сыграло решающую роль для её утверждения.

Теория Максвелла позволила единым образом подойти к описанию радиоволн (См. Радиоволны), света, рентгеновских лучей (См. Рентгеновские лучи) и гамма-излучения (См. Гамма-излучение). Оказалось, что это не излучения различной природы, а Э. в. с различной длиной волны. Частота ω колебаний электрического Е и магнитного Н полей связана с длиной волны λ соотношением: λ=с. Радиоволны, рентгеновские лучи и γ-излучение находят своё место в единой шкале Э. в. (рис.), причём между соседними диапазонами шкалы Э. в. нет резкой границы.

Особенности Э. в., законы их возбуждения и распространения описываются Максвелла уравнениями. Если в какой-то области пространства существуют электрические заряды е и токи I, то изменение их со временем t приводит к излучению (См. Излучение) Э. в. На скорость распространения Э. в. существенно влияет среда, в которой они распространяются. Э. в. могут испытывать преломление, в реальных средах имеет место Дисперсия волн, вблизи неоднородностей наблюдаются Дифракция волн, Интерференция волн (прямой и отражённой), полное внутреннее отражение и другие явления, свойственные волнам (См. Волны) любой природы. Пространств, распределение электромагнитных полей, временные зависимости E (t) и H (t), определяющие тип волн (плоские, сферические и др.), вид поляризации (см. Поляризация волн) и другие особенности Э. в. задаются, с одной стороны, характером источника излучения, и с другой - свойствами среды, в которой они распространяются. В случае однородной и изотропной среды, вдали от зарядов и токов, создающих электромагнитное поле, уравнения Максвелла, приводят к волновым уравнениям:

; ,

описывающим распространение плоских монохроматических Э. в.:

Е = E0 cos (kr - ωt + φ)

Н = H0 cos (kr - ωt + φ).

Здесь ε - Диэлектрическая проницаемость, μ∇ - магнитная проницаемость среды, E0 и H0 - амплитуды колебаний электрических и магнитных полей, ω - частота этих колебаний, φ - произвольный сдвиг фазы, k - волновой вектор, r - радиус-вектор точки; ∇2 - Лапласа оператор.

Если среда неоднородна или содержит поверхности, на которых изменяются её электрические либо магнитные свойства, или если в пространстве имеются проводники, то тип возбуждаемых и распространяющихся Э. в. может существенно отличаться от плоской линейно-поляризованной волны. Э. в. могут распространяться вдоль направляющих поверхностей (поверхностные волны), в передающих линиях и в полостях, образованных хорошо проводящими стенками (см. Радиоволновод, Световод, Квазиоптика).

Характер изменения во времени Е и Н определяется законом изменения тока I и зарядов e, возбуждающих Э. в. Однако форма волны в общем случае не следует I (t) или e (t). Она в точности повторяет форму тока только в случае, если и Э. в. распространяются в линейной среде (электрические и магнитные свойства которой не зависят от Е и Н). Простейший случай - возбуждение и распространение Э. в. в однородном изотропном пространстве с помощью диполя Герца (отрезка провода длиной l << λ, по которому протекает ток I = I0 sin ωt). На расстоянии от диполя много большем λ образуется волновая зона (зона излучения), где распространяются сферические Э. в. Они поперечные и линейно поляризованы. В случае анизотропии среды могут возникнуть изменения поляризации (см. Излучение и приём радиоволн).

В изотропном пространстве скорость распространения гармонических Э. в., т. e. фазовая скорость . При наличии дисперсии скорость переноса энергии с (Групповая скорость) может отличаться от v. Плотность потока энергии S, переносимой Э. в., определяется Пойнтинга вектором: S = (с/4π) [ЕН]. Т. к. в изотропной среде векторы Е и Н и волновой вектор образуют правовинтовую систему, то S совпадает с направлением распространения Э. в. В анизотропной среде (в том числе вблизи проводящих поверхностей) S может не совпадать с направлением распространения Э. в.

Появление квантовых генераторов, в частности Лазеров, позволило достичь напряжённости электрического поля в Э. в., сравнимых с внутриатомными полями. Это привело к развитию нелинейной теории Э. в. При распространении Э. в. в нелинейной среде (e и μ зависят от Е и Н) её форма изменяется. Если дисперсия мала, то по мере распространения Э. в. они обогащаются т. н. высшими гармониками и их форма постепенно искажается. Например, после прохождения синусоидальной Э. в. характерного пути (величина которого определяется степенью нелинейности среды) может сформироваться Ударная волна, характеризующаяся резкими изменениями Е и Н (разрывы) с их последующим плавным возвращением к первоначальным величинам. Ударная Э. в. далее распространяется без существ, изменений формы; сглаживание резких изменений обусловлено главным образом затуханием. Большинство нелинейных сред, в которых Э. в. распространяются без сильного поглощения, обладает значительной дисперсией, препятствующей образованию ударных Э. в. Поэтому образование ударных волн возможно лишь в диапазоне λ от нескольких см до длинных волн (См. Длинные волны). При наличии дисперсии в нелинейной среде возникающие высшие гармоники распространяются с различной скоростью и существенного искажения формы исходной волны не происходит. Образование интенсивных гармоник и взаимодействие их с исходной волной может иметь место лишь при специально подобранных законах дисперсии (см. Нелинейная оптика, Параметрические генераторы света).

Э. в. различных диапазонов λ характеризуются различными способами возбуждения и регистрации, по-разному взаимодействуют с веществом и т. п. Процессы излучения и поглощения Э. в. от самых длинных волн до инфракрасного излучения (См. Инфракрасное излучение) достаточно полно описываются соотношениями электродинамики (См. Электродинамика). На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оптическом диапазоне и тем более в диапазонах рентгеновских и γ-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов.

Квантовая теория поля внесла существенные дополнения и в само представление об Э. в. Во многих случаях электромагнитное излучение ведёт себя не как набор монохроматических Э. в. с частотой ω и волновым вектором k, а как поток квазичастиц - Фотонов с энергией и импульсом (ħ - Планка постоянная). Волновые свойства проявляются, например, в явлениях дифракции и интерференции, корпускулярные - в Фотоэффекте и Комптона эффекте.

Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Ландау Л. Д., Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959; Ландсберг Г. С., Оптика, 5 изд., М., 1976.

В. В. Мигулин.

Шкала электромагнитных волн.

излучение электромагнитное         
И., представляющее собой поток фотонов; в состав И. э. входят гамма-излучение, рентгеновское, оптическое и радиоизлучение.

Βικιπαίδεια

Электромагнитное излучение

Электромагни́тные во́лны / электромагни́тное излуче́ние (ЭМИ) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитный спектр подразделяется на:

  • радиоволны (начиная со сверхдлинных)
  • микроволновое излучение
  • терагерцевое излучение
  • инфракрасное излучение
  • видимое излучение (свет)
  • ультрафиолетовое излучение
  • рентгеновское излучение
  • жёсткое (гамма-излучение) (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Παραδείγματα προφοράς για Электромагнитные волны
1. Электромагнитные волны?
Sherlock Holmes (2009)
Παραδείγματα από το σώμα κειμένου για Электромагнитные волны
1. Электромагнитные волны содержат информацию о каждом существе.
2. Нам пришла идея превращать все электромагнитные волны в звуковые.
3. Мало ли какие загрязнения и электромагнитные волны от нее идут?
4. Этот прибор испускает электромагнитные волны, которые помогают человеку заснуть.
5. Исследователи паранормальных явлений утверждают, что привидения испускают электромагнитные волны.